opencv 脸部识别

Python-OpenCV人脸检测

2019-06-11
56次浏览

遇到的问题:sudo?apt-get?install?python-imaging?

安装过程中提示cache size空间不足。

解决:sudo apt-get clean ,然后sudo apt-get update,再次使用sudo apt-get install “需要安装的文件”

@author:wepon

@blog:http://blog.csdn.net/u012162613/article/details/43523507


做人脸识别,首先要检测出图片/视频中的人脸,今天就研究了一下OpenCV的Python接口,把常用的一些功能模块写成函数。基于Python-OpenCV以及PIL,实现图片中人脸的检测以及截取保存、眼睛检测、笑脸检测。下面简单总结一下。


一、软件安装

安装Python-OpenCV以及其?#35272;?#24211;、PIL,通过软件包管理器安装即可(Ubuntu系?#24120;?/p>


[python]?view plain?copy sudo?apt-get?install?libopencv-*?? sudo?apt-get?install?python-opencv?? sudo?apt-get?install?python-imaging??


安装完后,在”/usr/share/opencv/haarcascades/”目录下,可以看到很多的xml文件,如下图。这些文件保存的就是训练好之后的haar特征,关于人脸检测的haar分类器,推荐博文:《浅析人脸检测之Haar分类器方法》、《目标检测的图像特征提取之(三)Haar特征》。本文不阐述原理,只介绍怎么用这些xml文件来进行人脸检测。




二、python-opencv实现人脸检测


人脸检测


定义人脸检测函数detectFaces(),检测图片中所有出现的人脸,并返回人脸的矩形坐标(矩形左上、右下顶点坐标)。使用上面提到的xml文件(haar特征),haarcascades目录下有好几个是关于人脸检测的文件,这里选择haarcascade_frontalface_default.xml,当然?#37096;?#20197;使用其他的。另外需要注意的是,必须以灰度图作为haar分类器的输入。


def?detectFaces(image_name):
????img?=?cv2.imread(image_name)
????face_cascade?=?cv2.CascadeClassifier("/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml")
????if?img.ndim?==?3:
????????gray?=?cv2.cvtColor(img,?cv2.COLOR_BGR2GRAY)
????else:
????????gray?=?img?#if语句:如果img维度为3,说明不是灰度图,先转化为灰度图gray,如果不为3,也就是2,原图就是灰度图

????faces?=?face_cascade.detectMultiScale(gray,?1.2,?5)#1.3和5是特征的最小、最大检测窗口,它改变检测结果也会改变
????result?=?[]
????for?(x,y,width,height)?in?faces:
????????result.append((x,y,x+width,y+height))
????return?result





代码很好理解,先加载xml文件生成?#35835;?#20998;类器face_cascade,然后用这个?#35835;?#20998;类器对灰度图进行检测face_cascade.detectMultiScale(gray, 1.2, 5),返回值即图片中所有人脸的坐标(x,y,w,h),在上面的函数中,我们转化了一下,使得函数返回的是人脸矩形的左上、右下顶点坐标。(注:坐标零点即原始图像左上顶点,往下y增加,往右x增加)。

?

截取保存人脸图

上面的detectFaces函数我们获得了图片中所有人脸的坐标,在有些时候,我们希望把人脸截取出来,然后进行下一步操作(比如做人脸身份识别、表情识别等),保存人脸图的函数如下,使用了PIL的Image模块:

def?saveFaces(image_name):
????faces?=?detectFaces(image_name)
????if?faces:
????????#将人脸保存在save_dir目录下。
????????#Image模块:Image.open获取图像句柄,crop剪切图像(剪切的区域就是detectFaces返回的坐标),save保存。
????????save_dir?=?image_name.split('.')[0]+"_faces"
????????os.mkdir(save_dir)
????????count?=?0
????????for?(x1,y1,x2,y2)?in?faces:
????????????file_name?=?os.path.join(save_dir,str(count)+".jpg")
????????????Image.open(image_name).crop((x1,y1,x2,y2)).save(file_name)
????????????count+=1

?

?

框出人脸

有些时候,为了展示或者方便观察,需要在原始图像上框出人脸,用矩形将人脸框出,这个功能的实现如下,主要用到PIL的ImageDraw模块(另外,opencv也有画矩形工具,?#37096;?#20197;实现):

#在原图像上画矩形,框出所有人脸。
#调用Image模块的draw方法,Image.open获取图像句柄,ImageDraw.Draw获取该图像的draw实例,然后调用该draw实例的rectangle方法画矩形(矩形的坐标即
#detectFaces返回的坐标),outline是矩形线条颜色(B,G,R)。
#注:原始图像如果是灰度图,则去掉outline,因为灰度图没有RGB可言。drawEyes、detectSmiles也一样。
def?drawFaces(image_name):
????faces?=?detectFaces(image_name)
????if?faces:
????????img?=?Image.open(image_name)
????????draw_instance?=?ImageDraw.Draw(img)
????????for?(x1,y1,x2,y2)?in?faces:
????????????draw_instance.rectangle((x1,y1,x2,y2),?outline=(255,?0,0))
????????img.save('drawfaces_'+image_name)

好了,先看一下效果,运行drawFaces(‘obama.jpg’),得到右图:

运行saveFaces(‘obama.jpg’),将在当前目录下生成一个文件夹,并保存上面框出来的人脸,当然,有一些人脸没被检测出来,有些不是人脸被误认为人脸。

?

?

眼睛检测

在haarcascades目录下,也有一些关于眼睛检测的xml文件。可以像函数detectFaces()那样,将检测face的xml文件换成检测eyes的xml文件即可。但是,由于眼睛在人脸上,我们往往是先检测出人脸,再细入地检测眼睛。故detectEyes可在detectFaces基础上来进行,代码中需要注意“相对坐标”。detectEyes()函数同样返回所有eyes在原图中的坐标。

def?detectEyes(image_name):
????eye_cascade?=?cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_eye.xml')
????faces?=?detectFaces(image_name)

????img?=?cv2.imread(image_name)
????gray?=?cv2.cvtColor(img,?cv2.COLOR_BGR2GRAY)
????result?=?[]
????for?(x1,y1,x2,y2)?in?faces:
????????roi_gray?=?gray[y1:y2,?x1:x2]
????????eyes?=?eye_cascade.detectMultiScale(roi_gray,1.3,2)
????????for?(ex,ey,ew,eh)?in?eyes:
????????????result.append((x1+ex,y1+ey,x1+ex+ew,y1+ey+eh))
????return?result

?

?

框出眼睛

def?drawEyes(image_name):
????eyes?=?detectEyes(image_name)
????if?eyes:
????????img?=?Image.open(image_name)
????????draw_instance?=?ImageDraw.Draw(img)
????????for?(x1,y1,x2,y2)?in?eyes:
????????????draw_instance.rectangle((x1,y1,x2,y2),?outline=(0,?0,255))
????????img.save('draweyes_'+image_name)

运行drawEyes(‘obama.jpg’),看下效果,非常差:

?

?

?

笑脸检测

def?detectSmiles(image_name):
????img?=?cv2.imread(image_name)
????smiles_cascade?=?cv2.CascadeClassifier("/usr/share/opencv/haarcascades/haarcascade_smile.xml")
????if?img.ndim?==?3:
????????gray?=?cv2.cvtColor(img,?cv2.COLOR_BGR2GRAY)
????else:
????????gray?=?img?#if语句:如果img维度为3,说明不是灰度图,先转化为灰度图gray,如果不为3,也就是2,原图就是灰度图

????smiles?=?smiles_cascade.detectMultiScale(gray,4,5)
????result?=?[]
????for?(x,y,width,height)?in?smiles:
????????result.append((x,y,x+width,y+height))
????return?result

?

?

框出笑脸

def?drawSmiles(image_name):
????smiles?=?detectSmiles(image_name)
????if?smiles:
????????img?=?Image.open(image_name)
????????draw_instance?=?ImageDraw.Draw(img)
????????for?(x1,y1,x2,y2)?in?smiles:
????????????draw_instance.rectangle((x1,y1,x2,y2),?outline=(100,?100,0))
????????img.save('drawsmiles_'+image_name)

运行drawSmiles(‘obama.jpg’),看下效果,奥巴马的眼睛会笑了:

?

?总之,利用opencv里训练好的haar特征的xml文件,在图片上检测出人脸(眼睛、鼻子、笑脸…)的坐标,利用这个坐标,我们可以将人脸区域剪切保存,?#37096;?#20197;在原图上将人脸框出。剪切保存人脸以及用矩形工具框出人脸,本程序使用的是PIL里的Image、ImageDraw模块。此外?#37096;梢杂胦pencv里的画图工具画矩形。

?

代码文件放在?#19994;膅ithub上:wepe/OpenCV-demo/FaceDetection_python-opencv

参考:

1、OpenCV-Python Tutorials ? Object Detection ??Face Detection using Haar Cascades

2、?Python Imaging Library Handbook

我要点评

新时时彩